Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 63(2): 343-355, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37280186

RESUMO

Animals can adaptively behave in different environmental conditions by converting environmental information obtained from their sensory organs into actions. This sensory-motor integration enables the accomplishment of various tasks and is essential for animal survival. This sensory-motor integration also plays an important role in localization to females, relying on sex pheromones floating in space. In this study, we focused on the localization behavior of the adult male silk moth, Bombyx mori. We investigated sensory-motor integration against time delay using odor plume tracking performance as an index when we set a certain time delay for the sensory and motor responses. Given that it is difficult to directly intervene in the sensory and motor functions of the silk moth, we constructed an intervention system based on a mobile behavior measurement system controlled by them. Using this intervention system, not only can timing the detection of the odor in the environment and timing the presentation of the odor to the silk moth be manipulated, but timing the reflection of the movement of the silk moth can also be manipulated. We analyzed the extent to which the localization strategy of the silk moth could tolerate sensory delays by setting a delay to the odor presentation. We also evaluated behavioral compensation by odor sensory feedback by setting a delay to the motor. The results of the localization experiment have shown that the localization success rate did not decrease when there was a motor delay. However, when there was a sensory delay, the success rate decreased depending on the time delay. Analysis of the change in behavior after detection of the odor stimulus has shown that the movement was more linear when we set a motor delay. However, the movement was accompanied by a large rotational movement when there was a delay in the sensory input. This result has suggested that behavior is compensated for the delay in motor function by feedback control of odor sensation, but not when accompanied by sensory delay. To compensate for this, the silk moth may acquire appropriate information from the environment by making large body movements.


Assuntos
Bombyx , Atrativos Sexuais , Feminino , Masculino , Animais , Odorantes , Bombyx/fisiologia , Olfato/fisiologia , Comportamento Animal
2.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772519

RESUMO

Odor-source localization, by which one finds the source of an odor by detecting the odor itself, is an important ability to possess in order to search for leaking gases, explosives, and disaster survivors. Although many animals possess this ability, research on implementing olfaction in robotics is still developing. We developed a novel algorithm that enables a robot to localize an odor source indoors and outdoors by taking inspiration from the adult male silk moth, which we used as the target organism. We measured the female-localization behavior of the silk moth by using a virtual reality (VR) system to obtain the relationship between multiple sensory stimuli and behavior during the localization behavior. The results showed that there were two types of search active and inactive depending on the direction of odor and wind detection. In an active search, the silk moth moved faster as the odor-detection frequency increased, whereas in the inactive search, they always moved slower under all odor-detection frequencies. This phenomenon was constructed as a robust moth-inspired (RMI) algorithm and implemented on a ground-running robot. Experiments on odor-source localization in three environments with different degrees of environmental complexity showed that the RMI algorithm has the best localization performance among conventional moth-inspired algorithms. Analysis of the trajectories showed that the robot could move smoothly through the odor plume even when the environment became more complex. This indicates that switching and modulating behavior based on the direction of odor and wind detection contributes to the adaptability and robustness of odor-source localization.


Assuntos
Bombyx , Mariposas , Robótica , Animais , Masculino , Feminino , Odorantes/análise , Olfato , Algoritmos , Robótica/métodos
3.
Biomimetics (Basel) ; 7(2)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35735599

RESUMO

In this paper, the main features of systems that are required to flexibly modulate energy states of plant cells in response to environmental fluctuations are surveyed and summarized. Plant cells possess multiple sources (chloroplasts and mitochondria) to produce energy that is consumed to drive many processes, as well as mechanisms that adequately provide energy to the processes with high priority depending on the conditions. Such energy-providing systems are tightly linked to sensors that monitor the status of the environment and inside the cell. In addition, plants possess the ability to efficiently store and transport energy both at the cell level and at a higher level. Furthermore, these systems can finely tune the various mechanisms of energy homeostasis in plant cells in response to the changes in environment, also assuring the plant survival under adverse environmental conditions. Electrical power systems are prone to the effects of environmental changes as well; furthermore, they are required to be increasingly resilient to the threats of extreme natural events caused, for example, by climate changes, outages, and/or external deliberate attacks. Starting from this consideration, similarities between energy-related processes in plant cells and electrical power grids are identified, and the potential of mechanisms regulating energy homeostasis in plant cells to inspire the definition of new models of flexible and resilient electrical power grids, particularly microgrids, is delineated. The main contribution of this review is surveying energy regulatory mechanisms in detail as a reference and helping readers to find useful information for their work in this research field.

4.
Elife ; 102021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34822323

RESUMO

Most animals survive and thrive due to navigational behavior to reach their destinations. In order to navigate, it is important for animals to integrate information obtained from multisensory inputs and use that information to modulate their behavior. In this study, by using a virtual reality (VR) system for an insect, we investigated how the adult silkmoth integrates visual and wind direction information during female search behavior (olfactory behavior). According to the behavioral experiments using a VR system, the silkmoth had the highest navigational success rate when odor, vision, and wind information were correctly provided. However, the success rate of the search was reduced if the wind direction information provided was different from the direction actually detected. This indicates that it is important to acquire not only odor information but also wind direction information correctly. When the wind is received from the same direction as the odor, the silkmoth takes positive behavior; if the odor is detected but the wind direction is not in the same direction as the odor, the silkmoth behaves more carefully. This corresponds to a modulation of behavior according to the degree of complexity (turbulence) of the environment. We mathematically modeled the modulation of behavior using multisensory information and evaluated it using simulations. The mathematical model not only succeeded in reproducing the actual silkmoth search behavior but also improved the search success relative to the conventional odor-source search algorithm.


Assuntos
Bombyx/fisiologia , Percepção Olfatória , Orientação , Navegação Espacial , Realidade Virtual , Animais , Antenas de Artrópodes/fisiologia , Masculino , Odorantes , Feromônios , Percepção Visual , Vento
5.
J R Soc Interface ; 18(181): 20210171, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34404227

RESUMO

We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms' CPT behaviour. To construct the data-driven CPT model, a training dataset of the odour stimuli input toward the organism is needed, along with an output of the organism's CPT behaviour. To this end, we constructed a measurement system comprising an array of alcohol sensors for the measurement of the input and a camera for tracking the output in a real scenario. Then, we determined a transfer function describing the input-output relationship as a stochastic process by applying Gaussian process regression, and established the data-driven CPT model based on measurements of the organism's CPT behaviour. Through CPT experiments in simulations and a real environment, we evaluated the performance of the data-driven CPT model and compared its success rate with those obtained from conventional model-based strategies. As a result, the proposed data-driven CPT model demonstrated a better success rate than those obtained from conventional model-based strategies. Moreover, we considered that the data-driven CPT model could reflect the aspect of an organism's adaptability that modulated its behaviour with respect to the surrounding environment. However, these useful results came from the CPT experiments conducted in simple settings of simulations and a real environment. If making the condition of the CPT experiments more complex, we confirmed that the data-driven CPT model would be less effective for locating an odour source. In this way, this paper not only poses major contributions toward the development of a novel framework based on a data-driven approach for modelling an organism's CPT behaviour, but also displays a research limitation of a data-driven approach at this stage.


Assuntos
Comportamento Animal , Odorantes , Animais , Olfato
6.
Front Comput Neurosci ; 15: 629380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597856

RESUMO

Insects search for and find odor sources as their basic behaviors, such as when looking for food or a mate. This has motivated research to describe how they achieve such behavior under turbulent odor plumes with a small number of neurons. Among different insects, the silk moth has been studied owing to its clear motor response to olfactory input. In past studies, the "programmed behavior" of the silk moth has been modeled as the average duration of a sequence of maneuvers based on the duration of periods without odor hits. However, this model does not fully represent the fine variations in their behavior. In this study, we used silk moth olfactory search trajectories from an experimental virtual reality device. We achieved an accurate input by using optogenetic silk moths that react to blue light. We then modeled such trajectories as a probabilistic learning agent with a belief of possible source locations. We found that maneuvers mismatching the programmed behavior are related to larger entropy decrease, that is, they are more likely to increase the certainty of the belief. This implies that silkmoths include some stochasticity in their search policy to balance the exploration and exploitation of olfactory information by matching or mismatching the programmed behavior model. We believe that this information-theoretic representation of insect behavior is important for the future implementation of olfactory searches in artificial agents such as robots.

7.
Sensors (Basel) ; 21(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467684

RESUMO

In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.


Assuntos
Voo Animal , Odonatos , Dispositivos Eletrônicos Vestíveis , Animais , Fenômenos Biomecânicos , Insetos , Modelos Biológicos , Vibração , Asas de Animais
8.
Bioinspir Biomim ; 14(4): 046006, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31026859

RESUMO

Many animals use olfactory information to search for feeding areas and other individuals in real time and with high efficiency. We focus on the chemical plume tracing (CPT) ability of male silkworm moths and investigate an efficient CPT strategy for an autonomous robot. In the case of flying insects, the wind direction is an important factor in CPT, because the wind carries odors amongst other environmental information. However, whether the same phenomenon occurs in the walking silkworm moth has not been investigated. Therefore, we examine how the silkworm moth uses wind information during CPT. To accurately investigate the response to the wind direction, we introduce an optogenetic approach that replaces the odor stimulation with light stimulation, allowing us to separate the 'wind stimulus' from the 'odor stimulus'. We examine how the moth uses wind direction information in a biological experiment, and find that the movement speed is significantly reduced when the wind speed is relatively fast (1.0 m s-1). By implementing this phenomenon in an autonomous robot, we can improve the successful search rate over that of the conventional moth-inspired algorithm. Regarding the search time, the proposed algorithm finds the odor source faster in a low-frequency odorant emission environment, whereas the search is slower than the conventional method when the odor frequency is higher. Therefore, switching from the use of wind direction information to odor information according to the frequency with which the odor is encountered leads to efficient CPT performance.


Assuntos
Voo Animal/fisiologia , Mariposas/fisiologia , Robótica/instrumentação , Algoritmos , Animais , Masculino , Modelos Biológicos , Odorantes , Optogenética , Vento
9.
Sensors (Basel) ; 18(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388833

RESUMO

In this study, we design and verify an intake system using the wake of a pocket-sized quadcopter for the chemical plume tracing (CPT) problem. Solving CPT represents an important technique in the field of engineering because it can be used to perform rescue operations at the time of a disaster and to identify sources of harmful substances. An appropriate intake of air when sensing odors plays an important role in performing CPT. Hence, we used the air flow generated by a quadcopter itself to intake chemical particles into two alcohol sensors. By experimental evaluation, we verified that the quadcopter wake intake method has good directivity and can be used to realize CPT. Concretely, even at various odor source heights, the quadcopter had a three-dimensional CPT success rate of at least 70%. These results imply that, although a further development of three-dimensional CPT is necessary in order to conduct it in unknown and cluttered environments, the intake method proposed in this paper enables a pocket-sized quadcopter to perform three-dimensional CPT.

10.
Bioinspir Biomim ; 12(1): 016005, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922836

RESUMO

In this study, we developed a novel unfixed-type experimental system that we call a '3-DOF servosphere.' This system comprises one sphere and three omniwheels that support the sphere. The measurement method is very simple. An experimental animal is placed on top of the sphere. The position and heading angle of the animal are observed by using a high-speed camera installed above the sphere. Because the system can rotate the sphere with three degrees of freedom (DOFs) independently, the position and heading angle at the origin can be maintained without fixing the body. This system can be used to measure an animal's natural behavior while simultaneously providing it with precise stimuli. Moreover, electrodes can be inserted at specific sites to measure biosignals with locomotion. Therefore, this system can simultaneously measure the stimulus input-internal state-locomotion output of an animal. In this study, we focused on the chemical plume tracing (CPT) behavior of the Bombyx mori male silkworm moth in order to identify its CPT algorithm for mounting on a robot. In an experiment, we simultaneously measured the stimulus input, flight muscle electromyogram (EMG), and CPT behavior by using the 3-DOF servosphere to verify the system. We elucidated the relationship between the CPT behavior and flight muscle EMG.


Assuntos
Algoritmos , Materiais Biomiméticos , Bombyx/fisiologia , Locomoção/fisiologia , Robótica , Animais , Eletrodos Implantados , Eletromiografia , Voo Animal/fisiologia , Masculino , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...